
Introduction

Higher life forms such as humans have developed a highly 
efficient iron management system in which we absorb 
and excrete only about 1 mg of the metal daily; there is no 
mechanism for the excretion of excess iron1,2. As a result, 
a progressive accumulation of iron in the body, particu-
larly in the liver, leads to iron overload, which is toxic and 
can induce hepatocellular carcinoma development as 
observed in genetic and secondary hemochromatosis3,4. 
Iron plays a critical role in a variety of metabolic processes, 
as Fe-containing proteins catalyze key reactions involved 
in energy production and DNA synthesis. In particular, Fe is 
critical for ribonucleotide reductase (RR) activity, which is  
the rate-limiting step in DNA synthesis5. RR comprises 
two subunits, R1 and R2. Iron is essential for the catalytic 
activity of RR and stabilizes the tyrosyl radical located 

within the R2 subunit, making iron an obvious target for 
chemotherapeutic agents6. Iron depletion by different 
iron chelators has been shown to inhibit proliferation of  
various cell lines and normal activated lymphocytes in vit-
ro7–9. The iron depletion induced by iron chelators such 
as desferrioxamine (DFO) or O-Trensox decreases DNA 
synthesis in both normal and transformed hepatocytes10,11. 
Numerous cancer cell types are more susceptible to the 
effects of  chelators than normal cells due to a higher Fe 
 requirement for DNA synthesis and metabolism than the 
more slowly growing normal cells12. Several studies have 
shown that iron is implicated in tumor cell growth and 
some tumor cells are sensitive to iron  chelation therapy13–15. 
The role of Fe chelators has previously been reviewed16. The 
effect of Fe chelators is complex due to various molecular 
 targeting in addition to RR, and the molecular  mechanisms 
involved in G1/S arrest after Fe deprivation remain poorly 
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understood. Recent chelators such as 2-hydroxy-1-
 naphthylaldehyde isonicotinoyl hydrazone and analogs17,18 
and Triapine19 have shown greater antiproliferative activity 
than DFO in vitro. However, DFO used for the treatment of 
iron  overload, neuroblastoma, and other diseases such as 
malaria20,21 is poorly absorbed by the gastrointestinal tract; 
furthermore, continuous exposure to DFO causes dose- 
and time- dependent cytotoxicity22. Other disadvantages 
of DFO are its short plasma half-life and its poor perme-
ability, which lead to poor antitumor activity23. Therefore, 
 various new iron chelators have been designed for  clinical 
use. Among them, the bidentate hydroxypyridinone 
deferiprone (CP20) is the major molecule used for the 
treatment of  secondary iron overload24–26, but this chelator 
has been shown to induce severe neutropenia27. The orally 
active  tridentate ICL670 is of special interest21,22, because 
it induces cell cycle arrest in the S phase  associated with 
a decrease of polyamine levels which could result from 
 inhibition of polyamine biosynthesis, probably by  ornithine 
decarboxylase (ODC) inactivation28.

Clinically useful antitumor agents must show a  significant 
therapeutic index (i.e. they exert little effect on normal 
cells while inhibiting tumor cell growth). Richardson and 
Lovejoy identified, in the case of  pyridoxal isonicotinoyl 
hydrazone analogs, a significant chelator structure– activity 
relationship dependent on  lipophilicity29. Within a series, 
or family, of ligands, the more lipophilic  compounds 
 generally have better iron-clearing  efficiency, and 
lipophilicity has a profound effect on organ  distribution 
of the chelator30. Hider and Liu synthethized a family of 
hydroxypyridinone ester  analogs, which were designed 
especially to target the  hepatocellular low  molecular 
weight iron pool31. Chelators with high lipophilicity can 
easily enter cells and subsequently deplete iron from 
intracellular pools necessary for iron  incorporation into 
the R2 subunit. Another design  consideration to identify 
an ideal iron chelator for antiproliferative activity is metal 
selectivity32. The chelators should be selective for iron to 
minimize chelation of other biological metal cations such 
as Zn(II) and Cu(II).

Calix[4]arenes or derivatives have been tested as 
 bioactive compounds such as antitumoral, antiviral, anti-
microbial, anti-thrombotic, and antifungal agents33,34. 
Calix[4]arenes present interesting lipophilicity properties, 
and are selectively capable of binding cationic, anionic, or 
neutral species. Consequently, some calixarene derivatives 
possess affinity and selectivity for Fe(III), and much lower 
affinity for Mg(II), Ca(II), and Zn(II)35–37. Rao and colleagues 
reported a series of dinuclear transition metal complexes 
of calix[4]arenes. In the case of the Fe(III) complex the 
ligand acts as a trinegative, implying that the ligand uses a 
lower rim phenolic O− in the binding38,39. Other authors also 
described calix[n]arene–iron(III)  complexes in which the 
Fe(III) was six-coordinated by O donor atoms from calix[n]
arenes40. Fe(III)complexes of some amide-substituted 
calix[4]arenes have also been reported. In these complexes, 
the Fe is bound to all seven O atoms of the calixarene with 

the shortest Fe–O distance to the phenolate O atom41. 
Thus, taking into account our experience in the field of the 
 synthesis of new compounds of the calix[4]arene type42–44, 
we previously prepared new calix[4]arene podands  bearing 
two aspartic/glutamic acid or ornithine groups at the lower 
rim, and a mono hydrazidocalixarene45. In this series, two 
compounds 1–2 exhibited interesting antiproliferative 
activity in the rat hepatoma cell line Fao. Our preliminary 
published results need to be reinforced with complemen-
tary structure–activity (SAR) studies of other substituted 
calix[4]arenes in an aim to better  understand, in  particular, 
the level of substitution, or/and conformation of the 
 corresponding substituted calix[4]arenes in regard to their 
potential antiproliferative activities. In continuation of 
our work, we present here the synthesis and proliferative 
 activity in HepaRG cell line  cultures of new alkyl ester or 
alkyl acid calix[4]arene derivatives 3–9 (Figure 1).

These functions are selectively introduced into calix[4]
arenes locked in the cone or 1,3-alternate conformations 
to improve their antiproliferative activity, as well as their 
chelator behavior toward iron. The O donor atoms of the 
alkyl ester or alkyl acid calix[4]arene substituents could be 
implied in iron complexation in mono or dinuclear calyx[4]
arene complexes as previously mentioned by Rao et al.39. 
The HepaRG cell line was isolated from a liver tumor of a 
patient suffering from a hepatocarcinoma46. This bipotent 
cell line differentiates progressively in both hepatocyte-
like cells expressing highly differentiated functions and 
biliary-like cells. This cell line, which was characterized 
through a transcriptomic approach, exhibited an ability to 
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Figure 1. Structures of peptidocalix[4]arene 1, mono hydrazidocalix[4]
arene 2, and new ester or acid calix[4]arene derivatives 3–9.
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store iron within hepatocytes, when differentiated47. Such 
a model gives us the opportunity to evaluate the impact of 
iron chelators on hepatocyte metabolism at various phases 
of their proliferation/differentiation process.

Materials and methods

Chemistry
Instrumentation
Column chromatography was performed on Kieselgel 
60 (40–63 μm, ASTM) (Merck). Reactions were analyzed 
on precoated silica gel 60 F

254
 plates (Merck) and the 

 compounds were visualized with an ultraviolet (UV) lamp 
(254 nm) and phosphomolybdic acid reagent and heating. 
Calix[4]arene derivatives 5–7 were purified by reverse-
phase high performance luiquid chromatrography (HPLC) 
using a Shimadzu semi-preparative HPLC system on a 
ProSphere 100 C18 5 µm column (10 × 250 mm) by elution 
with a linear gradient of (A): aqueous 0.1%  trifluoroacetic 
acid (TFA) and (B): 0.1% (v/v) TFA in an acetonitrile/
water mixture (80/20), at a flow rate of 3 mL/min with 
UV detection at 220 nm. Melting points were determined 
with an SM-LUX-POL Leitz hot-stage microscope and are 
reported uncorrected. Infrared (IR) spectra were recorded 
on a Jasco Fourier transform (FT)/IR-4200 spectrometer. 
Nuclear magnetic resonance (NMR) spectra were recorded 
on a Bruker Avance 500 spectrometer (500 MHz). Chemical 
shifts refer to tetramethylsilane, which was used as an 
internal reference. J values are given in Hertz. Mass spectra 
were recorded on a Micromass (Waters) Q-TOF (quadru-
pole time-of-flight) Ultima spectrometer.

Synthesis of 25,27-dihydroxy-26,28-
bis(ethoxycarbonylpropoxy) or (ethoxycarbonylbutoxy) 
or (ethoxycarbonylpentoxy)tert-butyl-calix[4]arenes, 
cone 3a–c
A suspension of tert-butyl-calix[4]arene (1.54 mmol) 
and K

2
CO

3
 (3.69 mmol) was reacted with alkyl bromide 

(3.39 mmol) in refluxing CH
3
CN (50 mL) for 5 days. The 

 solvent was then evaporated at reduced pressure, and the 
residue was taken up with 10% HCl (150 mL) and extracted 
with CH

2
Cl

2
 (200 mL). The organic layer was separated, 

washed twice with water, dried (MgSO
4
), and evaporated 

to  dryness. The residue was chromatographed on silica gel 
with cyclohexane:ethyl acetate (8:2, v/v) to give 3a–c.

25,27-Dihydroxy-26,28-bis(ethoxycarbonylpropoxy)tert-
butyl-calix[4]arene, cone (3a) Yield: 85%, white crystals, 
mp = 163°C, (Found MNa+: 899.5449, C

56
H

76
O

8
23Na requires 

899.5438); IR ν
max

/cm−1 3337 (OH), 1708 (CO); 1H NMR δ 
(500 MHz, CDCl

3
) 7.78 (s, 2H, OH), 7.16 (s, 4H, Ar-H meta), 

6.97 (s, 4H, Ar-H meta), 4.36 (d, J 12.88 Hz, 4H, ArCH
2
Ar), 

4.21 (m, 4H, OCH
2
, ethyl), 4.14 (t, J 6.63 Hz, 4H, OCH

2
), 

3.43 (d, J 12.88 Hz, 4H, ArCH
2
Ar), 2.95 (t, J 6.68 Hz, 4H, 

CH
2
), 2.42 (m, 4H, CH

2
), 1.39 (s, 18H, CH

3
 t-butyl), 1.27 

(m, 6H, CH
3
 ethyl), 1.11 (s, 18H, CH

3
 t-butyl). 13C NMR δ 

(125 MHz, CDCl
3
) 173.8 (COO), 151.2 (Cq, Ar ipso), 150.1 

(Cq, Ar ipso), 147.5 (Cq, Ar para), 142.0 (Cq, Ar para), 133.2 

(Cq, Ar ortho), 128.2 (Cq, Ar ortho), 126.1 (CH, Ar meta), 
125.6 (CH, Ar meta), 75.6 (OCH

2
), 60.8 (OCH

2
, ethyl), 34.4 

(Cq, t-butyl), 34.3 (Cq, t-butyl), 32.3 (ArCH
2
Ar), 32.2 (CH

3
, 

t-butyl), 31.5 (CH
3
, t-butyl), 31.2 (CH

2
), 26.0 (CH

2
), 14.5 

(CH
3
, ethyl).

25,27-Dihydroxy-26,28-bis(ethoxycarbonylbutoxy)tert-
butyl-calix[4]arene, cone (3b) Yield: 84%, white crystals, 
mp = 157°C, (Found MNa+: 927.5707, C

58
H

80
O

8
23Na requires 

927.5751); IR ν
max

/cm−1 3340 (OH), 1720 (CO); 1H NMR δ 
(500 MHz, CDCl

3
) 7.56 (s, 2H, OH), 7.10 (s, 4H, Ar-H meta), 

6.87 (s, 4H, Ar-H meta), 4.32 (d, J 12.91 Hz, 4H, ArCH
2
Ar), 

4.17 (m, 4H, OCH
2
, ethyl), 4.04 (m, 4H, OCH

2
), 3.36 (d, J 

12.91 Hz, 4H, ArCH
2
Ar), 2.53 (m, 4H, CH

2
), 2.09 (m, 8H, 

CH
2
), 1.34 (s, 18H, CH

3
 t-butyl), 1.26 (m, 6H, CH

3
 ethyl), 

1.02 (s, 18H, CH
3
 t-butyl). 13C NMR δ (125 MHz, CDCl

3
) 

173.8 (COO), 151.1 (Cq, Ar ipso), 150.3 (Cq, Ar ipso), 147.2 
(Cq, Ar para), 141.8 (Cq, Ar para), 133.0 (Cq, Ar ortho), 
128.1 (Cq, Ar ortho), 125.9 (CH, Ar meta), 125.5 (CH, Ar 
meta), 76.3 (OCH

2
), 60.6 (OCH

2
, ethyl), 34.2 (CH

2
), 33.0 

(Cq, t-butyl), 32.9 (Cq, t-butyl), 32.2 (ArCH
2
Ar), 32.1 (CH

3
, 

t-butyl), 31.4 (CH
3
, t-butyl), 29.8 (CH

2
), 22.0 (CH

2
), 14.6 

(CH
3
, ethyl).

25,27-Dihydroxy-26,28-bis(ethoxycarbonylpentoxy)tert-
butyl-calix[4]arene, cone (3c) Yield: 93%, white crystal, 
mp = 147°C, (Found MNa+: 955,6039, C

60
H

84
O

8
23Na requires 

955,6064); IR ν
max

/cm−1 3323 (OH), 1727 (CO); 1H NMR δ 
(500 MHz, CDCl

3
) 7.60 (s, 2H, OH), 7.10 (s, 4H, Ar-H meta), 

6.88 (s, 4H, Ar-H meta), 4.33 (d, J 12.98 Hz, 4H, ArCH
2
Ar), 

4.14 (m, 4H, OCH
2
, ethyl), 4.04 (t, J 6.66 Hz, 4H, OCH

2
), 

3.35 (d, J 12.98 Hz, 4H, ArCH
2
Ar), 2.42 (t, J 7.2 Hz, 4H, CH

2
), 

2.08 (m, 4H, CH
2
), 1.84 (m, 4H, CH

2
), 1.76 (m, 4H, CH

2
), 

1.33 (s, 18H, CH
3
 t-butyl), 1.26 (t, J 7.24 Hz, 6H, CH

3
 ethyl), 

1.05 (s, 18H, CH
3
 t-butyl).13C NMR δ (125 MHz, CDCl

3
) 

174.0 (COO), 151.2 (Cq, Ar ipso), 150.4 (Cq, Ar ipso), 147.2 
(Cq, Ar para), 141.8 (Cq, Ar para), 133.1 (Cq, Ar ortho), 
128.3 (Cq, Ar ortho), 125.9 (CH, Ar meta), 125.5 (CH, Ar 
meta), 76.5 (OCH

2
), 60.7 (OCH

2
, ethyl), 34.7 (CH

2
), 34.3 

(Cq, t-butyl), 34.2 (Cq, t-butyl), 32.2 (ArCH
2
Ar), 32.1 (CH

3
, 

t-butyl), 31.5 (CH
3
, t-butyl), 30.4 (CH

2
), 26.0 (CH

2
), 25.2 

(CH
2
), 14.6 (CH

3
, ethyl).

Synthesis of 25,27-dihydroxy-26,28-bis(acidbutoxy) or 
(acidpentoxy) or (acidhexoxy)tert-butyl-calix[4]arenes, 
cone 4a–c
The ethyl ester 3a–c (0.7 mmol) was dissolved in a  solution 
of NaOH (15%) in ethanol (50 mL) and stirred for 1 h at 
reflux. The solution was neutralized using excess HCl 6 M 
and the product was extracted in EtOAc (3 × 30 mL). The 
organic phase was washed with water, dried (MgSO

4
), and 

evaporated to furnish a solid which was purified by  column 
chromatography (cyclohexane:ethyl acetate 8:2, v/v) to 
give 4a–c.

25,27-Dihydroxy-26,28-bis(acidbutoxy)tert-butyl-
calix[4]arene, cone (4a) Yield: 85%, white crystals, 
mp = 196°C, (Found MNa+: 843.4806, C

52
H

68
O

8
23Na requires 

843.4812); IR ν
max

/cm−1 3340 (OH), 1730 (CO); 1H NMR 
δ (500 MHz, CDCl

3
) 7.07 (s, 4H, Ar-H meta), 6.80 (s, 4H, 
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Ar-H meta), 4.26 (d, J 13.50 Hz, 4H, ArCH
2
Ar), 3.94 (m, 

4H, OCH
2
), 3.31 (d, J 13.50 Hz, 4H, ArCH

2
Ar), 2.86 (m, 4H, 

CH
2
), 2.34 (m, 4H, CH

2
), 1.31 (s, 18H, CH

3
 t-butyl), 1.00 

(s, 18H, CH
3
 t-butyl). 13C NMR δ (125 MHz, CDCl

3
) 180.0 

(COOH), 150.9 (Cq, Ar ipso), 150.3 (Cq, Ar ipso), 147.3 
(Cq, Ar para), 141.9 (Cq, Ar para), 132.8 (Cq, Ar ortho), 
128.2 (Cq, Ar ortho), 125.8 (CH, Ar meta), 125.5 (CH, Ar 
meta), 76.5 (OCH

2
), 33.0 (Cq, t-butyl), 32.7 (Cq, t-butyl), 

32.1(CH
3
, t-butyl), 31.9 (ArCH

2
Ar), 31.4 (CH

3
, t-butyl), 31.6 

(CH
2
), 26.0 (CH

2
).

25,27-Dihydroxy-26,28-bis(acidpentoxy)tert-butyl-
calix[4]arene, cone (4b) Yield: 86%, yellow crystals, 
mp = 180°C, (Found MNa+: 871.5103, C

54
H

72
O

8
23Na requires 

871.5125); IR ν
max

/cm−1 3310 (OH), 1731 (CO); 1H NMR δ 
(500 MHz, CDCl

3
) 8.72 (br s, 2H, OH), 7.56 (s, 2H, OH), 7.08 

(s, 4H, Ar-H meta), 6.85 (s, 4H, Ar-H meta), 4.30 (d, J 13.00 
Hz, 4H, ArCH

2
Ar), 4.02 (m, 4H, OCH

2
), 3.35 (d, J 13.00 Hz, 

4H, ArCH
2
Ar), 2.60 (m, 4H, CH

2
), 2.08 (m, 8H, CH

2
), 1.33 

(s, 18H, CH
3
, t-butyl), 1.00 (s, 18H, CH

3
, t-butyl). 13C NMR 

δ (125 MHz, CDCl
3
) 179.8 (COOH), 151.0 (Cq, Ar ipso), 

150.3 (Cq, Ar ipso), 147.3 (Cq, Ar para), 141.9 (Cq, Ar para), 
133.0 (Cq, Ar ortho), 128.2 (Cq, Ar ortho), 125.9 (CH, Ar 
meta), 125.5 (CH, Ar meta), 76.3 (OCH

2
), 34.2 (CH

2
), 34.2 

(Cq, t-butyl), 32.1 (ArCH
2
Ar), 32.0 (CH

3
, t-butyl), 31.4 (CH

3
, 

t-butyl), 29.7 (CH
2
), 21.9 (CH

2
).

25,27-Dihydroxy-26,28-bis(acidhexoxy)tert-butyl-
calix[4]arene, cone (4c) Yield: 89%, yellow crystals, 
mp = 105°C, (Found MNa+: 899.5468, C

56
H

76
O

8
23Na requires 

899.5438); IR ν
max

/cm−1 3304 (OH), 1734 (CO), 1707 (CO); 
1H NMR δ (500 MHz, CDCl

3
) 7.54 (s, 2H, OH), 7.50 (s, 2H, 

OH), 7.08 (s, 4H, Ar-H meta), 6.83 (s, 4H, Ar-H meta), 4.30 
(d, J 13.20 Hz, 4H, ArCH

2
Ar), 4.01 (m, 4H, OCH

2
), 3.33 (d, 

J 13.20 Hz, 4H, ArCH
2
Ar), 2.48 (m, 4H, CH

2
), 2.06 (m, 4H, 

CH
2
), 1.82 (m, 8H, CH

2
), 1.31 (s, 18H, CH

3
, t-butyl), 0.99 

(s, 18H, CH
3
, t-butyl).13C NMR δ (125 MHz, CDCl

3
) 179.8 

(COOH), 151.1 (Cq, Ar ipso), 150.3 (Cq, Ar ipso), 147.2 (Cq, 
Ar para), 141.8 (Cq, Ar para), 133.0 (Cq, Ar ortho), 128.3 
(Cq, Ar ortho), 125.9 (CH, Ar meta), 125.4 (CH, Ar meta), 
76.6 (OCH

2
), 76.5 (OCH

2
), 34.4 (CH

2
), 34.3 (Cq, t-butyl), 

34.2 (Cq, t-butyl), 34.0 (Cq, t-butyl), 32.2 (ArCH
2
Ar), 32.1 

(CH
3
, t-butyl), 31.3 (CH

3
, t-butyl), 30.0 (CH

2
), 26.0 (CH

2
), 

25.0 (CH
2
).

Synthesis of 25,27-dihydroxy-26,28-bis(O-
methylhydroxamatepropoxy)tert-butyl-calix[4]arene, 
cone (5)
A suspension of 4a (122 µmol), 1-hydroxyben-
zotriazole hydrate (HOBt) (536 µmol), and N-(3-
d i m e t h y l a m i n o p r o p y l ) - N ’ - e t h y l - c a r b o d i i m i n e 
hydrochloride (EDCI) (536 µmol) in CH

2
Cl

2
 (6 mL) 

was stirred at ambient temperature for 30 min. The 
O-methylhydroxylamine hydrochloride (536 µmol) was 
added and the solution was stirred at ambient temperature 
for 3 days. The solvent was then evaporated at reduced 
 pressure, and the residue was purified by HPLC to give 
5. Yield: 37%, yellow crystals, mp = 157°C, (Found MNa+: 
901.5322, C

54
H

74
O

8
23Na requires 901.5343); IR ν

max
/cm−1 3290 

(OH, NH), 1734 (CO); 1H NMR δ (500 MHz, CDCl
3
) 7.85 (br 

s, 1H, NH), 7.81 (br s, 1H, NH), 7.46 (s, 2H, OH), 7.08 (s, 4H, 
Ar-H meta), 6.83 (m, 4H, Ar-H meta), 4.23 (d, J 13.50 Hz, 
4H, ArCH

2
Ar), 4.04 (m, 4H, OCH

2
), 3.76 (s, 6H, OCH

3
), 3.36 

(d, J 13.50 Hz, 4H, ArCH
2
Ar), 2.90 (m, 4H, CH

2
), 2.34 (m, 4H, 

CH
2
), 1.30 (s, 18H, CH

3
, t-butyl), 0.98 (s, 18H, CH

3
, t-butyl). 

13C NMR δ (125 MHz, CDCl
3
) 171.4 (CONH), 151.0 (Cq, Ar 

ipso), 150.5 (Cq, Ar ipso), 150.4 (Cq, Ar ipso), 150.2 (Cq, Ar 
ipso), 147.8 (Cq, Ar para), 147.7 (Cq, Ar para), 142.7 (Cq, Ar 
para), 142.6 (Cq, Ar para), 132.9 (Cq, Ar ortho), 132.8 (Cq, 
Ar ortho), 128.9 (Cq, Ar ortho), 128.3 (Cq, Ar ortho), 128.2 
(Cq, Ar ortho), 126.0 (CH, Ar meta), 125.9 (CH, Ar meta), 
125.7 (CH, Ar meta), 125.6 (CH, Ar meta), 76.1 (OCH

2
), 75.9 

(OCH
2
), 43.6 (OCH

3
), 34.3 (Cq, t-butyl), 34.2 (Cq, t-butyl), 

32.1 (ArCH
2
Ar), 32.0 (CH

3
, t-butyl), 31.4 (CH

3
, t-butyl), 30.2 

(CH
2
), 26.5 (CH

2
), 25.9 (CH

2
), 25.8 (CH

2
).

Synthesis of 25,26,27-trihydroxy-28-
(ethoxycarbonylbutoxy)tert-butyl-calix[4]arene, cone 
(6) and 25-hydroxy-26,27,28-tri(ethoxycarbonylbutoxy)
tert-butyl-calix[4]arene, cone (7)
A suspension of tert-butyl-calix[4]arene (1.54 mmol) and 
NaH (7.09 mmol) in dimethylformamide (DMF) (50 mL) 
was stirred at 55°C for 1 h. Then ethyl 5-bromopentanoate 
(23.1 mmol) was added and the mixture was stirred for 15 h 
at the same temperature. The solvent was then evaporated 
at reduced pressure, and the residue was purified by HPLC 
to give 3b and 6–7.

25,26,27-Trihydroxy-28-(ethoxycarbonylbutoxy)tert-
butyl-calix[4]arene, cone (6) Yield: 7%, white crystals, 
mp = 210°C, (Found MNa+: 799.4943, C

51
H

68
O

6
23Na requires 

799.4914); IR ν
max

/cm−1 3297 (OH), 1729 (CO); 1H NMR δ 
(500 MHz, CDCl

3
) 10.38 (s, 1H, OH), 10.16 (s, 1H, OH), 9.55 

(s, 1H, OH), 7.10 (m, 8H, Ar-H meta), 4.37 (d, J 12.71 Hz, 2H, 
ArCH

2
Ar), 4.32 (d, J 12.71 Hz, 2H, ArCH

2
Ar), 4.20 (m, 2H, 

OCH
2
, ethyl), 4.19 (m, 2H, OCH

2
), 3.47 (m, 4H, ArCH

2
Ar), 

2.56 (m, 2H, CH
2
), 2.25 (m, 2H, CH

2
), 2.06 (m, 2H, CH

2
), 1.33 

(m, 3H, CH
3
, ethyl), 1.25 (s, 36H, CH

3
, t-butyl). 13C NMR δ 

(125 MHz, CDCl
3
) 173.7 (COO), 149.7 (Cq, Ar ipso), 148.9 

(Cq, Ar ipso), 148.6 (Cq, Ar ipso), 148.1 (Cq, Ar ipso), 147.1 
(Cq, Ar para), 144.8 (Cq, Ar para), 144.0 (Cq, Ar para), 143.6 
(Cq, Ar para), 133.9 (Cq, Ar ortho), 128.7 (Cq, Ar ortho), 
128.5 (Cq, Ar ortho), 128.1 (Cq, Ar ortho), 126.7 (CH, Ar 
meta), 126.3 (CH, Ar meta), 126.1 (CH, Ar meta), 126.0 
(CH, Ar meta), 77.1 (OCH

2
), 60.8 (OCH

2
, ethyl), 34.6 (CH

2
), 

34.2 (Cq, t-butyl), 33.5 (ArCH
2
Ar), 32.8 (ArCH

2
Ar), 33.0 (Cq, 

t-butyl), 31.9 (CH
3
, t-butyl), 31.8 (CH

3
, t-butyl), 31.6 (CH

3
, 

t-butyl), 29.7 (CH
2
), 21.9 (CH

2
), 14.7 (CH

3
, ethyl).

25-hydroxy-26,27,28-tri(ethoxycarbonylbutoxy)tert-
butyl-calix[4]arene, cone (7) Yield: 13%, white crystals, 
mp = 90°C, (Found MNa+: 1055.6622, C

65
H

92
O

10
23Na requires 

1055.6588); IR ν
max

/cm−1 3305 (OH), 1770 (CO); 1H NMR δ 
(500 MHz, CDCl

3
) 8.82 (s, 1H, OH), 7.17 (s, 2H, Ar-H meta), 

7.09 (s, 2H, Ar-H meta), 6.55 (s, 2H, Ar-H meta), 6.54 (s, 2H, 
Ar-H meta), 4.36 (d, J 12.60 Hz, 2H, ArCH

2
Ar), 4.33 (d, J 13.08 

Hz, 2H, ArCH
2
Ar), 4.17 (m, 6H, OCH

2
, ethyl), 3.96 (t, J 8.48 

Hz, 2H, OCH
2
), 3.85 (t, J 6.48 Hz, 4H, OCH

2
), 3.28 (d, J 13.08 
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Hz, 2H, ArCH
2
Ar), 3.22 (d, J 12.60 Hz, 2H, ArCH

2
Ar), 2.45 

(m, 6H, CH
2
), 2.35 (m, 2H, CH

2
), 1.97 (m, 4H, CH

2
), 1.91 (m, 

4H, CH
2
), 1.76 (m, 2H, CH

2
), 1.38 (s, 18H, CH

3
, t-butyl), 1.28 

(m, 9H, CH
3
, ethyl), 0.86 (s, 18H, CH

3
, t-butyl). 13C NMR δ 

(125 MHz, CDCl
3
) 174.0 (COO), 173.7 (COO), 154.2 (Cq, Ar 

ipso), 152.0 (Cq, Ar ipso), 151.0 (Cq, Ar ipso), 146.1 (Cq, Ar 
para), 145.6 (Cq, Ar para), 142.0 (Cq, Ar para), 136.3 (Cq, 
Ar ortho), 132.5 (Cq, Ar ortho), 132.1 (Cq, Ar ortho), 130.0 
(Cq, Ar ortho), 126.1 (CH, Ar meta), 125.4 (CH, Ar meta), 
125.3 (CH, Ar meta), 125.1 (CH, Ar meta), 76.2 (OCH

2
), 

76.0 (OCH
2
), 74.5 (OCH

2
), 60.7 (OCH

2
, ethyl), 60.6 (OCH

2
, 

ethyl), 34.9 (CH
2
), 34.5 (CH

2
), 34.0 (Cq, t-butyl), 32.2 (CH

3
, 

t-butyl), 32.1(CH
3
, t-butyl), 31.6 (ArCH

2
Ar), 31.5 (ArCH

2
Ar), 

31.4 (CH
3
, t-butyl), 30.0 (CH

2
), 29.5 (CH

2
), 22.1 (CH

2
), 22.0 

(CH
2
), 14.7 (CH

3
, ethyl), 14.6 (CH

3
, ethyl).

Synthesis of 25,27-dihydroxy-26,28-
bis(ethoxycarbonylpropoxy)calix[4]arene, cone (8b), 2
5,27,26,28-tetra(ethoxycarbonylmetoxy)calix[4]arene, 
cone (10), 25,27,26,28-tetra(ethoxycarbonylbutoxy)
calix[4]arene, 1,3-alternate (11)
A suspension of calix[4]arene (2.35 mmol) and K

2
CO

3
 (10.34 

mmol) was reacted with alkyl bromide (9.87 mmol) in 
refluxing CH

3
CN for 5 days. The solvent was then  evaporated 

at reduced pressure, and the residue was taken up with 
10% HCl (150 mL) and extracted with CH

2
Cl

2
 (200 mL). 

The organic layer was separated, washed twice with water, 
dried (MgSO

4
), and evaporated to dryness. The residue 

was chromatographed on silica gel with cyclohexane:ethyl 
acetate (7:3, v/v) to give 8b and 10–11.

25,27-Dihydroxy-26,28-bis(ethoxycarbonylpropoxy)
calix[4]arene, cone (8b) Yield: 48%, white crystals, 
mp = 156°C, (Found MNa+: 675.2903, C

40
H

44
O

8
23Na requires 

675.2934); IR ν
max

/cm−1 3287 (OH), 1734 (CO); 1H NMR δ 
(500 MHz, CDCl

3
) 8.25 (s, 2H, OH), 7.11 (d, J 7.56 Hz, 4H, 

Ar-H meta), 6.96 (d, J 7.56 Hz, 4H, Ar-H meta), 6.78 (t, J 7.56 
Hz, 2H, Ar-H para), 6.71 (t, J 7.56 Hz, 2H, Ar-H para), 4.30 
(d, J 13.00 Hz, 4H, ArCH

2
Ar), 4.22 (m, 4H, OCH

2
, ethyl), 4.11 

(t, J 5.80 Hz, 4H, OCH
2
), 3.44 (d, J 13.00 Hz, 4H, ArCH

2
Ar), 

2.98 (t, J 7.23 Hz, 4H, CH
2
), 2.40 (m, 4H, CH

2
), 1.30 (t, J 7.28 

Hz, 6H, CH
3
, ethyl). 13C NMR δ (125 MHz, CDCl

3
) 173.7 

(COO), 153.7 (Cq, Ar ipso), 152.0 (Cq, Ar ipso), 133.7 (Cq, 
Ar ortho), 129.4 (CH, Ar meta), 128.9 (CH, Ar meta), 128.7 
(CH, Ar meta), 128.4 (Cq, Ar ortho), 125.9 (CH, Ar para), 
119.5 (CH, Ar para), 75.7 (OCH

2
), 61.0 (OCH

2
, ethyl), 60.9 

(OCH
2
, ethyl), 31.8 (ArCH

2
Ar), 31.1 (CH

2
), 25.9 (CH

2
), 14.7 

(CH
3
, ethyl).

25,27,26,28-Tetra(ethoxycarbonylmethoxy)calix[4]arene, 
cone (10) Yield: 56%, white crystals, mp = > 225°C, (Found 
MNa+: 791.3061, C

44
H

48
O

12
23Na requires 791.3043); IR ν

max
/

cm−1 1734 (CO); 1H NMR δ (500 MHz, CDCl
3
) 7.11 (d, J 7.08 

Hz, 4H, Ar-H meta), 7.00 (d, J 7.08 Hz, 4H, Ar-H meta), 6.85 
(t, J 7.59 Hz, 4H, Ar-H para), 6.74 (t, J 7.59 Hz, 4H, Ar-H 
para), 4.72 (d, J 12.00 Hz, 4H, ArCH

2
Ar), 4.48 (m, 8H, OCH

2
, 

ethyl), 4.33 (d, J 13.20 Hz, 4H, OCH
2
), 4.20 (d, J 13.20 Hz, 

4H, OCH
2
), 3.51 (d, J 12.00 Hz, 4H, ArCH

2
Ar), 1.41 (t, J 7.05 

Hz, 12H, CH
3
). 13C NMR δ (125 MHz, CDCl

3
) 169.6 (COO), 

168.6 (COO), 152.5 (Cq, Ar ipso), 151.7 (Cq, Ar ipso), 151.6 
(Cq, Ar ipso), 133.4 (Cq, Ar ortho), 133.3 (Cq, Ar ortho), 
129.9 (CH, Ar meta), 129.3 (CH, Ar meta), 129.2 (CH, Ar 
meta), 126.9 (CH, Ar para), 126.8 (CH, Ar para), 120.6 (CH, 
Ar para), 73.0 (OCH

2
), 72.9 (OCH

2
), 62.4 (OCH

2
, ethyl), 32.2 

(ArCH
2
Ar), 32.0 (ArCH

2
Ar), 14.6 (CH

3
).

25,27,26,28-Tetra(ethoxycarbonylbutoxy)calix[4]arene, 
1,3-alternate (11) Yield: 10%, white crystals, mp = 138°C, 
(Found MNa+: 959.4879, C

56
H

72
O

12
23Na requires 959.4921); 

IR ν
max

/cm−1 1730 (CO); 1H NMR δ (500 MHz, CDCl
3
) 7.01 (d, 

J 7.53 Hz, 8H, Ar-H meta), 6.74 (t, J 7.53 Hz, 4H, Ar-H para), 
4.20 (m, 8H, OCH

2
, ethyl), 3.54 (t, J 7.22 Hz, 8H, OCH

2
), 3.70 

(s, 8H, ArCH
2
Ar), 2.33 (t, J 7.60 Hz, 8H, CH

2
), 1.61 (m, 8H, 

CH
2
), 1.49 (m, 8H, CH

2
), 1.26 (t, J 7.16 Hz, 12H, CH

3
, ethyl). 

13C NMR δ (125 MHz, CDCl
3
) 173.9 (COO), 156.9 (Cq, Ar 

ipso), 134.1 (Cq, Ar ortho), 130.0 (CH, Ar meta), 122.2 (CH, 
Ar para), 71.2 (OCH

2
), 60.7 (OCH

2
, ethyl), 37.5 (ArCH

2
Ar), 

34.7 (CH
2
), 29.8 (CH

2
), 21.9 (CH

2
), 14.7 (CH

3
, ethyl).

Pharmacology
Cell cultures
HepaRG cells were cultured as previously described47. They 
were maintained in William’s E medium supplemented with 
10% fetal bovine serum, 100 U/mL penicillin, 100 µg/ mL 
streptomycin, 5 × 10−5 M hydrocortisone hemisuccinate, 
and 5 µg/mL insulin. Cells were seeded at 2 × 104 cells/cm2 
in 96-well microplates for LDH and SDH measurements.

Cell treatments
The various derivatives were compared to the tridentate 
hydroxyphenyltriazole ICL670 (Deferasirox, Exjade™)48. 
Stock solutions of each molecule (2.5 mM) were  prepared 
in dimethylsulfoxide (DMSO). The solubility of each 
 derivative in culture medium in the concentration range 
0–200 µM was preliminarily verified by  turbidimetry 
 measurement. Two controls were done for each  experiment: 
one with the  standard culture medium, and the other 
with culture medium supplemented with DMSO at the 
 concentration used for ICL670 and calix[4]arene tests. 
DMSO-supplemented  controls did not show any difference 
from standard medium controls. Therefore, only the results 
obtained with controls without DMSO are reported.

Solubility of the chelators
Solubility of the new calix[4]arenes was estimated in 
 phosphate-buffered saline (PBS) solution and in cell culture 
medium containing 10% fetal calf serum (FCS). Solutions of 
the various compounds (200, 100, 50, 25 µM) were  prepared 
in 96-well microplates by diluting the 2.5 mM stock 
 solutions in DMSO in 200 µL of PBS and  culture medium. 
The absorbance (turbidity) of the  solutions was measured 
at 590 nm, out of the absorption range of chromophores.

Comparison of chelator efficiency in aqueous phase
In solution, calcein, a fluoresceinated analog of ethylen-
ediaminetetraacetic acid (EDTA), binds iron(II) and more 
slowly iron(III) (K

a
 = 1024 M−1). The fluorescence of this 
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metallosensor dye is quenched during its interaction with 
iron and conversely is restored during removal of iron from 
the calcein–iron complex by various chelators. The rate and 
extent of fluorescence recovery depend on the  chelator 
concentration, the kinetics and  stoichiometry of iron 
 binding, and the relative binding affinity. The  fluorescence 
(λ

Exc
 = 485 nm, λ

Em
 = 520 nm) of calcein (100 nM) in a HEPES 

buffer (20 mM HEPES, 150 mM NaCl, pH 7.3) was  measured 
at room temperature in a microplate  fluorescence reader 
(Packard, Fusion™), equipped with an orbital stirrer. 
Iron(III) (1 µM) reacted slowly with calcein, and maximal 
quenching of its fluorescence was observed for a time 
longer than 6 h. Fluorescence recovery was monitored 
after 4 h incubation in the presence of various chelator 
concentrations.

Cytostatic and cytotoxic effects measurement
Chelator exposures were performed 1 day after cell  seeding 
in proliferating HepaRG cells. After 72 h incubation at 37°C, 
cell supernatant was collected for lactate  dehydrogenase 
measurement (LDH). The HepaRG cells were washed 
twice with sodium phosphate buffer 50 mM, pH 7, and 
mitochondrial succinate dehydrogenase activity (SDH) 
in cell  monolayers was measured using the MTT assay. 
Cytoxicity was evaluated by measuring extracellular LDH 

activity (cytotoxicity detection kit; LDH, Roche, Penzberg, 
Germany) and SDH activity by the tetrazolium  colorimetric 
assay (MTT; Sigma, St Louis, MO). Extracellular LDH activ-
ity was measured as described by the manufacturer on a 
20 µL aliquot of cell-free medium obtained by  centrifugation 
(2500 rpm/min during 5 min). LDH activities were detected 
by reading the absorbance at 485 nm. Data are the mean of 
three independent measurements. They are reported as a 
percentage of extracellular LDH activity with respect to the 
control value.

SDH activity was detected after 3 h incubation in 100 µL 
serum-free medium containing 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT, 0.5 mg/L). 
Formazan salts were solubilized in DMSO and absorbance 
was read at 535 nm. Data are the mean of three  independent 
measurements. They are reported as a percentage of SDH 
activity with respect to the control value. The concentration 
inducing a 50% inhibition of cell growth (IC

50
) was deduced 

from a four-parameter fit of the dose–effect curves.

Statistical analysis
Results from at least three replicates are expressed as 
mean ± SD. Statistical analysis was performed using the 
non-parametric Mann–Whitney test. The significance level 
was set at 0.01.

Scheme 1. Synthesis of tert-butyl-calix[4]arenes 3–7. Reagents: (i) K
2
CO

3
, Br(CH

2
)

n
COOEt, CH

3
CN; (ii) (1) NaOH, EtOH; (2) HCl, H

2
O; (iii). HOBt, EDCI, 

NH
2
OCH

3
.HCl, CH

2
Cl

2
; (iv) NaH, Br(CH

2
)

4
COOEt, DMF.
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Results and discussion

Chemistry
The reaction of tert-butyl-calix[4]arene available commer-
cially with 2.2 eq. of ethyl bromoalkylacetate in the presence 
of 2.4 eq. of K

2
CO

3
 as a base in refluxing CH

3
CN for 5 days 

gave the diametrically substituted cone 25,27-diethoxycar-
bonylalkyloxy tert-butyl-calix[4]arenes 3a–c. Saponification 
of the diesters 3a–c with 15% sodium hydroxide in ethanol 
under reflux gave, after acidification, the corresponding 
diacids 4a–c. The tert-butyl-calix[4]arene 5 was synthesized 
from diacid 4a by coupling with O-methylhydroxylamine in 
CH

2
Cl

2
 (Scheme 1). The  reaction of tert-butyl-calix[4]arene 

with ethyl 5-bromopentanoate with NaH as a base in DMF 
furnished a mixture of cone mono-, bi-, and tri-alkylated 
tert-butyl-calix[4]arenes 6, 3b, and 7 in, respectively, 7%, 
26%, and 13% yields (yields obtained after HPLC purifica-
tion) (Scheme 1).

The cone conformations of the tert-butyl-calix[4]arene 
3–7 were confirmed by the 1H NMR spectrum. In the 

case of the dialkylated tert-butyl-calix[4]arene 3–5, the 
cone  conformation is characterized by the  characteristic 
 chemical shift (δ = 4.37–4.26 and 3.47–3.22 ppm)  
and  coupling constants (J = 12.71–13.50 Hz) of the two 
types of diastereotopic proton signals of the methylene 
bridges. For the tert-butyl-calix[4]arenes monoalkylated 
6 or  trialkylated 7, the typical pattern represented by 
two 2H doublets at 4.37 and 4.32 ppm for 6 and 4.36 and 
4.33 ppm for 7 was due to the axial protons of the bridg-
ing  methylene (ArCH

2
Ar). The corresponding equatorial 

 protons were present at 3.28 and 3.22 ppm for 7, but from 
6 were observed at 3.74 ppm in a multiplet signal (4H). 
The spectrum also showed three sharp signals for the OH 
groups from 6 at 10.38, 10.16, and 9.55 ppm and one signal 
from 7 at 8.82 ppm (1H).

The synthesis of the new calix[4]arenes 8–11 was 
 accomplished in one or two step(s) starting from the calix[4]
arene commercially available (Scheme 2). Calix[4]arene 
diester 8a was prepared in 55% yield by alkylation of the 
unsubstituted calix[4]arene with ethyl bromoacetate in the 

Scheme 2. Synthesis of calix[4]arenes 8–11. Reagents: (i) K
2
CO

3
, Br(CH

2
)

n
COOEt, CH

3
CN; (ii) (1) NaOH, EtOH; (2) HCl, H

2
O.
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presence of one equivalent of K
2
CO

3
 as a base, in refluxing 

CH
3
CN42–45. Hydrolysis of 8a with 15% sodium hydroxide in 

ethanol under reflux gave, after acidification, the crystal-
line diacid 9 (95%)45,49,50.

The compounds 8b, 10, and 11 were prepared by 
 alkylation of the calix[4]arene commercially available with 
4.2 eq. of alkyl bromide in the presence of 4.4 eq. of K

2
CO

3
 

as a base in refluxing CH
3
CN. The alkylation led to the bi- or 

OCH2
ethyl

ArCH2Ar

OCH2

OCH2
ethyl

ArCH2Ar ArCH2ArOCH2

PPM 8.4 8.0 7.6 7.2 6.8 6.4 5.66.0 5.2 4.8 4.4 4.0 3.23.6 2.8 2.4 2.0 1.6 1.2 0.8 0.4

PPM 8.4 8.0 7.6 7.2 6.8 6.4 5.66.0 5.2 4.8 4.4 4.0 3.23.6 2.8 2.4 2.0 1.6 1.2 0.8 0.4

4.4

x   0.500

4.0 3.64.2 3.8 3.4

4.4

x   0.500

4.0 3.64.2 3.8 3.4 3.2

A

B

Figure 2. 1H NMR (500 MHz, CDCl
3
) calix[4]arene spectrum: (A) calix[4]arene 8b in cone conformation; (B) calix[4]arene 11 in 1,3-alternate 

conformation.
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tetra-substituted ethoxycarbonylalkyloxycalix[4]arene in 
cone or 1,3-alternate conformations.

As observed for the dialkylated tert-butyl-calix[4]arene 
3–5, the cone conformation calix[4]arene diester 8b and 
tetra-alkylated calix[4]arene 10 is characterized by a 
typical AB pattern, which was observed for the methylene 
bridge ArCH

2
Ar protons (J = 12.00–13.00 Hz) at 4.72–4.30 

ppm for the axial protons and 3.51–3.44 ppm for the 
equatorial  protons (1H NMR spectrum, Figure 2). In the 
13C NMR spectrum the corresponding carbon absorption 
was present at 31.8 ppm from diester 8b and 32.2 and 32.0 
ppm from tetra-alkylated 10. The spectrum of diester 8b 
also showed one signal for the two OH groups at 8.25 ppm. 
The 1,3-alternate conformation of the calix[4]arene 11 was 
determined from the 1H NMR spectrum, which exhibited 
a singulet signal at 3.70 ppm that could be attributed to 
the bridging methylene groups of the calix[4]arene  moiety 
(Figure 2). The signal at 37.5 ppm for the methylene 
bridge carbons in the 13C NMR spectrum confirmed the 
structure.

The 3D structures of 3c and 8b were established by 
X-ray crystallography analysis51 and confirmed the cone 
conformation in the solid state (Figure 3) as anticipated on 
the basis of 1H NMR data. Molecules adopted a “pinched-
cone” conformation commonly found in calix[4]arenes in 
cone conformation. With respect to the reference methyl-
ene plane C7, C14, C21, and C28, the interplanar angles of 
C1–C6, C8–C13, C15–C20, and C22–C27 rings in 3c were 
57.76 (25), 63.22 (21), 57.21 (25), and 63.18 (21), respec-
tively. In 8b, the same angles were noted at 44.24 (8), 74.75 
(9), 44.59 (10), and 68.54 (9), respectively. The angles 

between the aromatic units of the calix[4]arene skeleton 
through the methylene carbons were 112.2 (5), 111.0 (5), 
112.3 (5), and 111.7 (5) for 3c, and 113.3 (2), 111.4 (3), 112.2 
(2), and 111.8(3) for 8b. Not surprisingly, in both cone 
calix[4]arenes, the ethoxycarbonylalkyloxy chains adopt 
various conformations. Moreover, they do not present a 
regular conformation. In these two structures, the inter-
calixarene contacts are of the van der Waals variety and 
there are no solvent accessible voids in the crystal lattice.

Pharmacology
The low solubility of the methyl and ethyl calix[4]arene 
esters 3b–c, 6, 8b, and 11 in aqueous solvents and more 
particularly in cell culture medium prevented us from 
studying their biological efficiency. A relative and limited 
structure–solubility study based on the functional groups 
can be proposed here. Better solubility is always observed 
in the case of the substituted acid calix[4]arenes. When 
three methylene units or more were incorporated in the 
aliphatic chain of mono-, bi-, or tetra-substituted calix[4]
arenes, no solubility was observed in the correspond-
ing alkyl acid or ester compounds, whether they were in 
cone or 1,3-alternate conformation. In the same manner, 
the presence of t-butyl groups on the upper rim increased 
the lipophilic property of the corresponding compounds 
(3b–c, 7) and consequently the corresponding water 
insolubility.

Comparison of chelator efficiency in aqueous phase
An efficient iron chelator such as ICL670 is able to remove and 
to interact with iron complexed to calcein (totally quenched 
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fluorescence) and, consequently, release fluorescent free 
calcein. As shown in Figure 4, ICL670 concentrations higher 
than 0.1 µM restored the fluorescence of calcein associated 
with 1 µM FeCl

3
. The ICL670  concentration inducing 50% of 

the maximal  dequenching of (ED
50

) was close to 0.4 µM. The 
chelating efficiency of ICL670, deduced from this calcein 
assay, can be compared to that of other iron chelators such 
as O-Trensox (ED

50
 = 0.6 µM) or desferal (DFO, ED

50
 = 5 µM). 

In contrast, various calix[4]arene derivatives were inefficient 
in restoring the calcein fluorescence in this range of concen-
trations (Figure 4).

Biological effects in human hepatocarcinoma HepaRG 
cell cultures
In proliferating HepaRG cells, a dose-dependent decrease 
of cell viability (MTT assay, Figure 5A) was observed 
after a 72 h cell treatment in the presence of increasing 
 concentrations of all compounds (Figure 5, 0–200 µM). The 
relative effect on cell viability of the derivatives was in the 
 following order: 3a > 4c = 7 > 4a > 4b > 10 > 5 > 9. This effect 
was due to the cytotoxicity of the compounds as detected 
by the  concomitant increase in LDH in cell supernatant 
(Figure 5B).

As shown in Table 1, in the absence of iron, the 
 compound concentrations inducing a 50% inhibition of 
cell growth (IC

50
) were close to that of ICL670 (20–50 µM), 

except for compounds 5 and 9 which were less efficient with 
an IC

50
 higher than 90 µM. Addition of 20 µM  exogenous 

iron(III) did not change the efficiency of the compounds 
(same IC

50
 in presence or absence of iron), while it partly 

reversed the inhibiting effect of ICL670 on cell viability 
(IC

50
 = 91 µM). Comparison of the relative toxicity of calix[4]

arene derivatives at concentration 100 µM, in the  presence 
or absence of exogenous iron, compared to ICL670 is 
reported in Table 1. At this concentration, the increase in 
cytotoxity induced by the various compounds remained 
unchanged in the presence of exogenous iron while it was 
partly decreased with ICL670.

Conclusion

New calix[4]arene derivatives were shown to reduce the 
viability of proliferating HepaRG cells. This effect was due to 
their cytotoxicity leading to membrane damage and associ-
ated with LDH leakage in cell supernatant. The efficiency of 
these compounds was comparable to that of ICL670 used 
as a reference. The relative antiproliferative efficiency of the 
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Figure 5. Effect of compounds on cell viability (A, MTT assay) and 
 cytotoxicity (B, LDH release in cell supernatant) in proliferating HepaRG 
cell cultures. HepaRG cells at D4 were maintained in culture for 72 h 
with various concentrations of ICL670 (•) or various compounds. Data 
expressed as percent of control (absence of compound) are the mean of 
three independent experiments.
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Figure 4. Comparison of iron chelating efficiency using calcein fluo-
rescence measurements in a cell-free system. Fluorescence of 100 nM 
 calcein (λ

Exc
 = 485 nm, λ

Em
 = 520 nm) in HEPES buffer (20 mM HEPES, 

150 mM NaCl, pH 7.3) was detected in a microplate fluorescence reader 
(free calcein). Iron(III) (1 µM) totally quenched the calcein fluorescence 
and addition of compounds including ICL670 used as a chelator  reference 
led to fluorescence recovery dependent on chelator concentration, and 
kinetics and stoichiometry of their iron binding affinity.
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derivatives was in the following order: 3a > 4c = 7 > 4a > 4b > 
10 > 5 > 9. These first results do not enable us to determine 
precisely the structure–activity relationship in these series. 
As deduced from the absence of an effect of exogenous iron, 
the effect of calix[4]arene on cell viability was not correlated 
to iron depletion. On the basis of their inability to remove 
and interact with iron complexed to calcein, we deduced 
that the compounds were not efficient iron chelators. This 
effect, independent of iron depletion, remains to be further 
explored in order to understand the cytostatic effect. Finally, 
the novel  substituted calix[4]arenes could open the way to 
new valuable medicinal chemistry scaffolding.
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